
2019-09-20

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

For loops

2
For loops

Outline

• In this lesson, we will:

– Describe for loops and their implementation in C++

– Describe their purpose

• Specifically count-controlled loops

3
For loops

Count-controlled loops

• We previous looked at executing a block of code a fixed number of
times:

unsigned int num_iterations{0};

while (num_iterations < max_iterations) {

// Do something...

++num_iterations;

}

4
For loops

Count-controlled loops

• This is so common, it is given a short form:

unsigned int k{0};

while (k < n) {

// Do something...

++k;

}

for (unsigned int k{0}; k < n; ++k) {

// Do something...

}

2019-09-20

2

5
For loops

Count-controlled loops

• This form is called a for loop:

for (unsigned int k{0}; k < n; ++k) {

// Do something...

}

• The format gives a clean presentation of a count-controlled loop

– All you need to know about the loop is on one line

Initialization statement

Conditional expression

Incremental statement

6
For loops

Count-controlled loops

• Behavior:

for (unsigned int k{0}; k < n; ++k) {

// Do something...

}

• First, the initialization statement is executed

• Before each execution of the block of statements, the condition is
checked

– If the condition is false, the for loop exits

• After all statements in the block are executed, the incremental
statement is executed as a separate statement

7
For loops

Count-controlled loops

• If the variable declaration is in the for loop

for (unsigned int k{0}; k < n; ++k) {

// The scope of 'k' is this block of statements only

// Do something...

}

• If the declaration is before, the variable must simply be assigned an
initial value for the for loop

unsigned int k{};

for (k = 0; k < n; ++k) {

// Do something...

}

// 'k' continues to be in scope

8
For loops

Warning

• Some programming languages have true count-controlled loops:

– For example, Maple:

for k from 1 to 10 do

% 'k' is assigned a value from 1 to 10

% Do something...

end do;

This loop will iterate exactly ten times, and with each subsequent
execution, the variable k will be assigned the next value

2019-09-20

3

9
For loops

Warning

• In C++, the values of k and n can be changed inside the body

unsigned int n{10};

for (unsigned int k{0}; k < n; ++k) {

if ((k % 3) == 2) {

k += 2;

}

if ((k % 4) == 1) {

++n;

}

std::cout << k << ", " << n << std::endl;

}

10
For loops

Warning

• The output may appear confusing:

unsigned int n{10};

for (unsigned int k{0}; k < n; ++k) {

if ((k % 3) == 2) {

k += 2;

}

if ((k % 4) == 1) {

++n;

}

std::cout << k << ",\t" << n << std::endl;

}

Output:
0, 10
1, 11
4, 11
7, 11
10, 11

Note that k == n in the last iteration…

11
For loops

Warning

• In general, don’t do this—use a while loop instead!

unsigned int n{10};

unsigned int k{0};

while (k < n) {

if ((k % 3) == 2) {

k += 2;

}

if ((k % 4) == 1) {

++n;

}

std::cout << k << ", " << n << std::endl;

++k

}

12
For loops

Variations on a theme

• The following are identical:

for (unsigned int k{0}; k < 10; ++k) {

// 'k' takes on the values, 0, 1, 2, 3, ..., 8, 9

}

for (unsigned int k{0}; k != n; ++k) {

// 'k' takes on the values, 0, 1, 2, 3, ..., 8, 9

}

– The first is more common

2019-09-20

4

13
For loops

Variations on a theme

• Jumping by different values

– For example, jumping by two:

for (unsigned int k{1}; k < 16; k += 2) {

// 'k' takes on the values 1, 3, 5, 7, ..., 15

}

• Going down

– For example, going down by one:

for (unsigned int k{9}; k > 0; --k) {

// 'k' takes on the values 9, 8, 7, 6, 5, ..., 1

}

14
For loops

Variations on a theme

• You can jump geometrically:

– For example, multiplying by two

for (unsigned int k{1}; k < 100; k *= 2) {

// 'k' takes on 1, 2, 4, 8, 16, 32, 64

}

• You can shrink geometrically:

for (unsigned int k{100}; k > 0; k /= 2) {

// 'k' takes on 100, 50, 25, 12, 6, 3, 1

}

15
For loops

Variations on a theme

• You can even use floating-point numbers:

for (double x{0.0}; x <= 1.0; k += 0.1) {

// 'x' takes on 0.0, 0.1, 0.2, ..., 0.9, 1.0

}

• Problem: floating-point numbers are not exact:

for (double x{0.0}; x <= 1.0; k += 1.0/9.0) {

// 'x' takes on 0, 0.111111, 0.222222, 0.333333,

// ..., 0.666667, 0.777778, 0.888889

}

16
For loops

• Here is an implementation of the factorial function:

unsigned int factorial(unsigned int n);

unsigned int factorial(unsigned int n) {

unsigned int result{1};

for (unsigned int k{2}; k <= n; ++k) {

result *= k;

}

return result;

}

Factorial function

If n < 2, the body of the loop is never executed

2019-09-20

5

17
For loops

• Try this yourself:
#include <iostream>

// Function declarations

int main();

unsigned int factorial(unsigned int n);

// Function definitions

int main() {

for (int k{0}; k < 20; ++k) {

std::cout << k << "! = " << factorial(k) << std::endl;

}

return 0;

}

unsigned int factorial(unsigned int n) {

unsigned int result{1};

for (unsigned int k{2}; k <= n; ++k) {

result *= k;

}

return result;

}

Factorial function

18
For loops

• A number is perfect—whatever that means—if it is the sum of its
divisors

bool is_perfect(unsigned int n);

bool is_perfect(unsigned int n) {

unsigned int sum{0};

for (unsigned int k{1}; k < n; ++k) {

if ((n % k) == 0) {

sum += k;

}

}

return (sum == n);

}

Perfect numbers

19
For loops

• A number n is prime if it is not divisible by any number between 2

and n – 1:

bool is_prime(unsigned int n);

bool is_prime(unsigned int n) {

for (unsigned int k{2}; k < n; ++k) {

if ((n % k) == 0) {

return false;

}

}

return true;

}

Prime numbers

20
For loops

• You really only need to search up to the integer square root of n:

bool is_prime(unsigned int n);

bool is_prime(unsigned int n) {

unsigned int upper_bound{isqrt(n)};

for (unsigned int k{2}; k <= upper_bound; ++k) {

if ((n % k) == 0) {

return false;

}

}

return true;

}

Prime numbers

2019-09-20

6

21
For loops

Summary

• Following this lesson, you now

– Understand how to implement for loops in C++

– Know this is a special case of the while loop

– Understand it should be restricted to count-controlled loops

– Seen various applications

22
For loops

References

[1] Wikipedia

https://en.wikipedia.org/wiki/For_loop

23
For loops

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
For loops

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

https://en.wikipedia.org/wiki/For_loop

